Note that these are the answers to the numerical and simple expression questions.

1. (a) 85 ms\(^{-1}\); 306 kph
 (b) 0.71 ms\(^{-2}\)
 (c) 0.07

 (d) (i)
 (e) \(v A \rho\)
 (f) 1.22 \(\times 10^4\) N

2. (c) E

3. (a) 4.2 \(\times 10^4\) km
 (b) 55 ms\(^{-1}\)
 (c) 2.5 ms\(^{-1}\)

 (d) in direction of arrow

4. (a) sum of external torques; time-rate-of-change or angular momentum
 (c) zero

5. 0.5 ms\(^{-1}\)

6. 0.5

7. (b) 124 m
 (c) 34 \(\mu\)s
 (d) 110 km

8. (a) \(v = \sqrt{\frac{2(P_{atm} + \rho g(d - h))}{\rho}}\)
 (b) (i) 0.5
 (b) (ii) 2.1 \(\times 10^5\) Pa, 305 mole

9. (a) (i) positive-x
 (a) (ii) 0.020 m
 (a) (iii) 9.0 Hz/(2\(\pi\))

 (a) (iv) 8\(\pi\) m
 (a) (v) 36 ms\(^{-1}\)
 (a) (vi) 26 N

 (b) (i) 4
 (b) (iii) open pipe is longer
 (c) 26.4 ms\(^{-1}\)

10. Note 2 different initial temperature of ice were given, so there are two sets of possible correct answers.

<table>
<thead>
<tr>
<th>Initial temperature of – 4°C</th>
<th>Initial temperature of – 40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 3.42 kJ</td>
<td>(a) 4.22 kJ</td>
</tr>
<tr>
<td>(b) 4.09 °C</td>
<td>(b) 5.04 °C</td>
</tr>
<tr>
<td>(c) 20 °C</td>
<td>(c) 19 °C</td>
</tr>
<tr>
<td>(e) 23 °C</td>
<td>(e) 23 °C</td>
</tr>
</tbody>
</table>